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Abstract. A system concatenated by two area-preserving maps may be addressed as “quasi-dissipative”,
since such a system can display dissipative behaviors. This is due to noninvertibility induced by disconti-
nuity in the system function. In such a system, the image set of the discontinuous border forms a chaotic
quasi-attractor. At a critical control parameter value the quasi-attractor suddenly vanishes. The chaotic
iterations escape, via a leaking hole, to an emergent period-8 elliptic island. The hole is the intersection
of the chaotic quasi-attractor and the period-8 island. The chaotic quasi-attractor thus changes to chaotic
quasi-transients. The scaling behavior that drives the quasi-crisis has been investigated numerically.

PACS. 05.45.Ac Low-dimensional chaos

1 Introduction

A crisis, which denotes sudden, discontinuous changes
of chaotic attractors in conventional dissipative systems,
was predicted and investigated by Grebogi, Ott, and
Yorke [1–3]. They have mentioned mainly three types of
crises. They are: interior crisis, boundary crisis, and cyclic
crisis [2]. In the case of a boundary crisis, a chaotic attrac-
tor collides with an unstable periodic orbit on its basin
boundary. After the crisis the boundary cuts out nearly
all the points of the unstable manifold of the periodic or-
bit, which has the shape of the original chaotic attractor.
The remnants form a fractal set that is addressed as a
chaotic saddle [2,4,5]. Trajectories starting from points of
a chaotic saddle never leave the saddle and exhibit chaotic
motion forever. It is, however, completely unlikely to hit
such a point by random choice since the saddle is a set
of zero measure and is globally not attractive. What is
observable experimentally is not the saddle but rather a
small neighborhood of it. Trajectories starting close to
the saddle can stay for a long time in its neighborhood
and show chaotic properties, but sooner or later they es-
cape. Thus the chaotic saddle leads to transient chaos.
In some systems the chaotic transients may be superlong,
and can be addressed as supertransients [6]. Properties
of chaotic saddles and chaotic transients are important
physical quantities in many practical fields, for example,
in controlling chaos [7] and sustaining chaos [8].
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The most important property of crisis, the scaling law
of the so-called “characteristic time” (or lifetime) τ , usu-
ally shows a universal form [2]:

〈τ〉 ∼ ε−ν , when ε→ 0, (1)

where 〈τ〉 denotes the average value of τ and ε = |p− pc|
(p is the driving parameter and pc is its critical value).
The exact definition of τ and the method for obtaining its
average value are different for different kinds of crises [2].
In everywhere smooth one-dimensional maps the scaling
exponent ν takes a universal value 1/2. In an everywhere
smooth two-dimensional map ν can be expressed as a func-
tion of the eigenvalues associated with the unstable peri-
odic orbit responsible for the crisis [2].

This article presents a new kind of crisis. At the criti-
cality point a so-called “chaotic quasi-attractor” suddenly
vanishes, but the mechanism is qualitatively different from
what was shown in boundary crisis. A supertransients ap-
pears after it. We cannot find any chaotic saddle, but
can define a “strange repeller” [5] instead. This new kind
of crisis was observed in so-called “quasi-dissipative sys-
tems” or “piece-wise smooth concatenations of two con-
servative systems”, which basically do not obey the
famous Kolmogorov-Arnold-Moser (KAM) theorem. In re-
cent years some scientists have paid attention to such non-
KAM systems [9–16]. Among them, references [13,14] dis-
cussed a system exemplified by a particle in an infinite
potential well subject to a periodic kicking force. They
found a kind of diffusion in a stochastic web structure
with special scaling properties. Reference [15] reported
an investigation in a system concatenated by two area-
preserving maps, which can be viewed as the model of



120 The European Physical Journal D

an electronic relaxation oscillator with over-voltage pro-
tection. Reference [16] studied a simplified model of the
system discussed in reference [15]. The authors found that
the systems can display dissipative behaviors due to non-
invertibility induced by discontinuity of the system func-
tion. For example, some elliptic islands may attract it-
erations from outside due to the fact that there may be
one of the backward images of a point inside the islands.
As soon as the iterations enter the islands, they follow
the conservative regulations exactly. The islands therefore
were addressed as “regular quasi-attractors” [15,16], and
the systems may be addressed as quasi-dissipative sys-
tems. We shall still use these two systems to show the
new crisis.

The article is arranged as follows: Section 2 intro-
duces two systems and some research results obtained with
them; Section 3 reports the quasi-crisis; Section 4, the last
section, contains a discussion and conclusion.

2 The systems

Wang et al. suggested a model of an electronic relaxation
oscillator with over-voltage protection [15]. In the circuit a
capacitor is repeatedly charged and discharged, operated
by two electronically controllable switches. The charging
current is much larger than the discharging current. The
voltage across the capacitor, V , varies linearly between
a sine-modulated upper threshold and a lower threshold.
For simplicity the time period of the charging duration
is ignored. When considering over-voltage protection, we
let the upper threshold equal a constant E in the phase
region F where V > E. Thus the upper threshold can be
expressed by two different forms{

Uup
n = Umax − U0 sin(2πxn),

Uup
n = Umax + cU0,

when
xn /∈ F,
xn ∈ F,

(2)

where U0 is the amplitude of the upper threshold modu-
lation signal, and Umax and c are constants, xn is the nor-
malized phase of the modulation signal (at the point of the
upper threshold where the relaxation oscillation reaches
at time tn), F = (xF1 , xF2) = (0.5 + (arcsin c)/2π, 1 −
(arcsin c)/2π) (this being the phase region of over-voltage
protection). The lower threshold is modulated by the un-
derlying xn phase according to a certain rule. We define
another variable, yn, to describe it. Figure 1 shows the
relaxation oscillation of V and both the upper and lower
thresholds, as well as the over-voltage protection. Based
on the characteristics of the circuit one can get the follow-
ing map describing the system [15]:{
xn+1 = f1x = xn + yn+1 + a

b ,

yn+1 = f1y = yn − sin 2πxn
b ,

[mod. 1] when xn /∈ F,

(3){
xn+1 = f2x = xn + yn + a+c

b ,

yn+1 = f2y = yn + 2xn,
[mod. 1] when xn ∈ F,

(4)
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Fig. 1. A drawing showing the relaxation oscillation of the
voltage across the capacitor and both the upper and lower
thresholds, as well as the over-voltage protection.

where a, b are constant parameters. If there is no volt-
age protection, the linear map (4) does not appear. The
remaining map (3) can be viewed as a kind of standard
map [17]. The main characteristics of it have been dis-
cussed already in many references. The authors of refer-
ence [15] show that in map (3) the last remaining KAM
torus which stretches from x = 0 to x = 1.0 is going
to be broken at b = bc = 6.46684... When b < bc, the
system is globally chaotic. We denote the two border-
lines between the definition ranges of map (3) and (4)
by {(x, y)|x = xF1} and {(x, y)|x = xF2}. When voltage
protection is applied they may hit some KAM cycles in
an elliptic island and destroy them.

One should note that there might be some energy lost
when over-voltage protection is applied. Thus this system
can be dissipative at this point and conservative in other
places in the process. While the system changes between
dissipative and conservative, the absolute value of the de-
terminant of the Jacobean matrix of maps (3) or (4) equals
a unit. The system can show a kind of non-invertibility
that leads to dissipative behaviors. The inverse mappings
of maps (3) and (4) are:{

xn = f−1
1x = xn+1 − yn+1 − a/b,

yn = f−1
1y = yn+1 + sin(2πxn)/b,

when xn /∈ F, (5)

{
xn = f−1

2x = −xn+1 + yn+1 + (a+ c)/b,

yn = f−1
2y = yn+1 − 2xn,

when xn ∈ F.

(6)

Due to the fact that the condition of selecting solutions in
mappings (5) or (6) is determined by xn instead of xn+1,
one can find two (xn, yn) values for each (xn+1, yn+1) ac-
cording to either the function f1 or f2. That means the
concatenation map is noninvertible.

The authors of reference [15] discussed the evolution
of three fixed points. They are at (x∗1, y

∗
1) = (0,−a/b),
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(x∗2, y
∗
2) = ((arcsin b)/2π,−a/b) and (x∗3, y

∗
3) = (1 −

(arcsin b)/2π,−a/b). These fixed points are elliptic when
the condition b > π/2 (for (x∗1, y

∗
1)), or b ∈ (π/

√
4 + π2, 1)

(for (x∗2,3, y∗2,3)) is satisfied, respectively. With the param-
eter values a = 2.0 and c = 0.933564, the authors of refer-
ence [15] show analytically and numerically that (x∗1, y

∗
1)

period doubles first at b = π/2 ' 1.570. The period-
doubling bifurcation cascade is normal before b ' 1.37
when one of the period-2 elliptic islands hits a border-
line. Between this value and b ' 1.324 more and more
KAM cycles of the island vanish via collisions with the
border. This entire process happens beneath the thresh-
old bc, i.e., inside the globally chaotic region. If there were
no voltage protection the islands would have been inside
a chaotic sea. But in the current system all the chaotic
trajectories escape, after chaotic transients, to the islands
via one or two leaking holes. A hole is mainly formed by
the intersection of the inverse image of one of the islands
and the protection region F . As soon as the iterations
reach the islands, they perform typical conservative prop-
erties. The islands thus were addressed as “regular quasi-
attractors” and the chaotic transients were addressed as
“chaotic quasi-transients”. All the chaotic quasi-transients
become stable chaotic orbits at b ' 1.324 due to the van-
ishing of the leaking hole, i.e., due to the fact that the
inverse image of the island leaves the protection region,
but there is still a remaining part of the period-2 elliptic
island. The main period doubling bifurcation cascade is
interrupted by a hitting of the period-2 elliptic point to
the borderline at b ' 1.21774, so that the system shows
a complete chaotic motion. After b = 1.0 a new elliptic
point (x∗3, y

∗
3) appears, and the trajectories in the chaotic

sea change to chaotic quasi-transients again by similar rea-
son. The aforementioned elliptic point (x∗2, y

∗
2) falls into

the protection region and does not appear. With a = 2.0,
b = 0.933564 < 1, and parameter c varying inside the
range c ∈ [0.7, 0.9], the authors of reference [15] show all
the quasi-dissipative properties more clearly.

As is well-known, the behaviors of an elliptic island
surrounded by a chaotic sea in the phase space of a stan-
dard map can be described by a DeVogelaere square map-
ping [17,18]. Therefore all the above-mentioned behaviors
can be qualitatively displayed by a piece-wise smooth con-
catenation of a DeVogelaere square mapping and a linear
map. Wang et al. [16] used such a simplified model and
made more analytic discussion on quasi-dissipative behav-
iors. Although the two systems have their own character-
istics the quasi-dissipative behaviors they show are quali-
tatively same. So we may think that this simplified model
has a similar electronics background as maps (3) and (4).
We shall mainly discuss this model [16] in the current pa-
per. The simplified maps read:{
xn+1 = gx1 = pxn − (1− p)x2

n − yn,
yn+1 = gy1 = xn − pxn+1 + (1− p)x2

n+1,
when xn ≥ f,

(7){
xn+1 = gx2 = xn + c,

yn+1 = gy2 = yn + c,
when xn < f, (8)

(a)

(b)

Fig. 2. This figure shows a chaotic quasi-attractor (a) and the
quasi-transience, as well as the set of images of the discontinu-
ous border observed in systems (7) and (8) (b). The parameter
values and the computation methods are indicated in the text.

where p, c, and f are real constants. There is only one
borderline, {(x, y)|x = xf}, between the definition ranges
of map (7) and (8). In a square mapping, iterations from
most of the initial points outside the stable islands trend
to infinity. We ignore these iterations in the current dis-
cussion. It is easy to verify that maps (7) and (8) have
similar noninvertible and quasi-dissipative properties [16].

3 The quasi-crisis

3.1 The chaotic quasi-attractor

In the simplified models (7) and (8), a chaotic quasi-
attractor can be formed by the set of discontinuous border
images. To show this phenomenon, Figure 2a was com-
puted by using (7) and (8) and selecting an initial value
(−0.035,−0.0075) in phase space. The parameter values
were chosen as p = −1.007, c = 0.006, and f = −0.02.
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We ignored the first 1 000 iterations to avoid the quasi-
transients, and then recorded the following 20 000. When
we record 20 000 iterations from the initial value without
ignoring the first 1 000 ones, the obtained pattern occu-
pies a much larger part of the phase space. Thus Fig-
ure 2a should show a chaotic quasi-attractor. Figure 2b
is designed to show the quasi-transience and the set of
images of the discontinuous border with the same pa-
rameter values. The black circles indicate the first 7 it-
erations from an initial value (0.035, 0.0), the lines and
the small spots indicate the computation results ob-
tained by recording 450 iterations from 1 000 evenly dis-
tributed initial values on the discontinuous borderline
{(x, y)|x=f ;y∈[−0.01592,0.02521]}. Here we confine y in the
range y ∈ [−0.01592, 0.02521] because the iterations from
most of the initial values beyond this range will trend to
infinity. When we ignore about 300 iterations from the
border, the remaining iterations form exactly the same
pattern as shown in Figure 2a and as shown by the dense
black spots in Figure 2b. Thus one can clearly see that the
transient iterations from (0.035, 0.0) tend to go toward
and then fall into the chaotic quasi-attractor, which is
formed by the end-results of the border images. A similar
phenomenon was also observed in the original systems (3)
and (4). Actually, the “stable chaotic orbits” or “complete
chaotic motion”, those appearing between b ' 1.324 and
b ' 1.21774 or b ' 1.21774 and b = 1.0, and are men-
tioned at the end of Section 2, can be certified as chaotic
quasi-attractors. They will even look like typical chaotic
attractors in dissipative systems if parameter c becomes
smaller and the protection region becomes larger. This
conclusion was not reported in reference [15]. The details
will be presented elsewhere.

3.2 The quasi-crisis

The chaotic quasi-attractor in maps (7) and (8) suddenly
disappears and the so-called “quasi-crisis” happens at
p = pc ' −1.00697995. The crisis is addressed as such
because it describes a sudden change in a chaotic quasi-
attractor. At the criticality point, a period-8 elliptic orbit
suddenly emerges inside the chaotic quasi-attractor. One
of the elliptic points is adjacent to the discontinuous bor-
derline. When p becomes smaller still, the elliptic islands
around the elliptic orbit become continuously larger. How-
ever, the largest KAM cycle in the island nearest to the
borderline is always tangent to the line. The iterations
from all the initial points (which do not tend to infin-
ity) are attracted to the island as shown by Figure 3.
The original chaotic quasi-attractor changes to chaotic
transients. Like what is shown in all the conventional
crises [1,2,6], the chaotic transience is extremely long.
Usually it takes 106, sometimes even 108, iterations. Fig-
ure 3a shows part of the chaotic quasi-transients and the
regular quasi-attractor together. The latter is too small
to be seen in Figure 3a. To solve this problem, Figure 3b
shows a magnification of the part of the phase space shown
by the square in Figure 3a, where one of the 8 elliptic is-
lands intersects with the set of discontinuous border im-

(a)

(b)

Fig. 3. (a) This figure shows part of the chaotic quasi-
transients and the period-8 elliptic island chain. The compu-
tation was conducted by maps (7) and (8) and the parameter
values p = −1.006, f = −0.02, and c = 0.006. The first 104 iter-
ations from the 8×8 initial values, which evenly distributed in
the phase space area x ∈ [−0.015, 0.01], y ∈ [−0.006, 0.006],
were ignored, and then the following 2 500 iterations were
recorded. When we ignore 109 iterations from the initial values,
the following iterations fall in the period-8 elliptic islands. The
largest KAM cycle in the island nearest to the borderline is
always tangent to the line. (b) shows some KAM circles in an-
other one of the islands. All the iterations showing the chaotic
transient pattern in (a) disappear at that point. (b) This fig-
ure shows a magnification of the part of the phase space shown
by the square in (a). The small spots show the discontinuous
border images. The larger circles show some of the KAM cir-
cles in one of the period-8 elliptic islands, which surrounds the
corresponding elliptic point.

ages shown by small spots. The chaotic transient iterations
now escape from the intersection set that serves as 8 leak-
ing holes. We note that very recently Buljan and Paar
investigated the escape of iterations in a chaotic attractor
from many holes [19]. They proved analytically that the
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Fig. 4. The black squares show the numerical data com-
puted by maps (7) and (8), and the definition (10). The pa-
rameter values are chosen as c = 0.006, f = −0.02, and
pc = −1.0069799. Parameter p varies in the range p ∈
[−1.0067,−1.0063]. The range is small due to the fact that
when p > −1.0063 the elliptic orbits, which intersect with the
image set of the border, show sudden changes. In the com-
putation, 〈N〉 was obtained by calculating the iterations from
evenly distributed 201×201 initial values. The good agreement
of the data to the linear line, which was obtained by the least
square fitting, indicates that this scaling law (9) is valid in the
underlying system.

many-hole interactions can significantly prolong the aver-
age lifetime. This is in agreement with our results about
the superlong chaotic transients.

This behavior resembles an escape from a strange
set [20]. We thus can expect a scaling behavior as:

〈N〉 ∝ (p− pc)−ν , when p→ pc, (9)

where the mean transient time 〈N〉 is defined as:

〈N〉 = lim
n→∞

∑n
i=1Ni
n

· (10)

In the definition n is the number of initial points,
from which the iterations tend toward the regular quasi-
attractor, and Ni is the length of quasi-transients from
each initial point. This scaling law is in qualitative agree-
ment with equation (1). The fact also suggests that the
current phenomenon belongs to the crises. As shown by
Figure 4, our numerical investigation certifies that the
scaling law (9) is valid in the underlying system, and that
the scaling exponent ν = 1.66 ± 0.04 when the critical
parameter value equals pc = −1.0069799.

3.3 Similar behaviors in other systems

Similar phenomena with qualitatively the same scaling
behavior were also discovered in other quasi-dissipative
systems. In the original model of the electronic relax-
ation oscillator, (3) and (4), as briefly introduced in Sec-
tion 2, the authors of reference [15] found a period-2 el-
liptic orbit coming from the period doubling bifurcation

of the fixed point (x∗1, y
∗
1). The orbit hits the borderline

at b ' 1.21774, so that the system shows a complete
chaotic motion. We certified that the chaotic iterations
form a chaotic quasi-attractor. As very briefly mentioned
in reference [15], the similar scaling behavior for the mean
transient time can be found numerically. The obtained
rule is 〈N〉 ∝ (b − bc)−ν . Here the scaling exponent is
ν ' 1.39. However, the critical value is bc = 1.3245 in-
stead of b ' 1.21774. The reason is that the escaping hole
vanishes, before the collision of the period-2 elliptic or-
bit with the discontinuous borderline, due to the fact that
the inverse image of one of the elliptic islands leaves the
protection region F at bk = 1.3245. This fact makes the
behavior differ from a quasi-crisis, but it still resembles an
escape from a strange set.

Another system that displays similar behavior is a
model describing the motion of a kicked particle. As stated
in Section 1, references [13,14] discussed a system exem-
plified by a particle in an infinite potential well along half
of a cycle subject to a periodic kicking force. This system
can be described by a two-dimensional map that is dis-
continuous but invertible [13,14]. The system thus is fully
conservative. We studied a revised version of the model in
which the particle still moves along the cycle. In the up-
per or lower half it moves in the same potential but is sub-
jected to a kicking force with different periods. The revised
system can be described by a two-dimensional map that is
discontinuous and noninvertible, which means it becomes
quasi-dissipative. When the ratio between the periods of
the kicking force, β, decreases from 1, the new system dis-
plays a transition from conservative to quasi-dissipative.
We found that, after the criticality point βc = 1, many el-
liptic islands intersect with a stochastic web, along which
the iterations had performed fully conservative chaotic dif-
fusion. The intersection set between the islands and the
web then serve as many leaking holes, and the chaotic
diffusion becomes superlong chaotic transients. This phe-
nomenon also differs from the quasi-crisis, but it also re-
sembles an escape from a strange set. The numerically
computed scaling rule is 〈N〉 ∝ (β− βc)−ν . Here the scal-
ing exponent is ν ' 1.148.

The details of the phenomena briefly reported in this
subsection will be presented elsewhere.

4 Discussion and conclusion

In conclusion we have observed a new kind of crisis in a
quasi-dissipative system. The crisis is induced by a mech-
anism different from those in conventional types. The
new mechanism is the emergence of a periodic elliptic is-
land chain inside a chaotic quasi-attractor. This new crisis
obeys a scaling law with a similar form to what is shown
in conventional crises. The scaling exponent is in a reason-
able range [20], but we cannot understand it in an analyt-
ical way yet. Another difference between the quasi-crisis
and conventional types is that we cannot find any chaotic
saddle. We believe it does not exist since the mechanism,
which produces chaotic saddles as introduced in Section 1,
does not exist here. However, by ensemble method [5] we
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can find points of the iterations, which stay in the vicin-
ity of an invariant set. Trajectories starting from points of
the set never leave it and exhibit chaotic motion forever.
This fact means that the inverse image set of the period-8
elliptic islands cut out nearly all the points of the end-
results of the border images. The remnants form a fractal
set. Following Tél, we can define this set as a “strange
repeller” [5].

The quasi-crisis is probably common in these types
of systems. If one investigates the crisis along the oppo-
site direction of the control parameter variation, the phe-
nomenon becomes a quasi-intermittency. This is induced
by a collision between a periodic elliptic orbit and the dis-
continuous border of the system function. However, the
scaling law is very different from that of the conventional
intermittency.
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